End TermAssessment- Nov/Dec 2020

Semester –III B.Tech. - CSE

Subject Code: CS 2003

Duration: 2 hours (including time for uploading)

(10 Minutes Max Grace time)

Instructions

- Write name and registration number, page number, on all the pages, convert into one PDF, tag it with your registration number Name subjectcode subject title
- The Assessment consists of 2 sections
 - Part A contains 10questions of 2marks each and all questions are compulsory.
 - Part B consists of 4 questions of 10 marks each, out of which 3 questions to be attempted.
- Hand written responses to be submitted/uploaded as scanned pages of answer sheets (max. 5 pages) within the mentioned duration. 6th page and onwards won't be evaluated

PART – A 2 * 10 =20 Marks (Each answer- Word Limit- 50 Words)

- 1. Is $(\sim P \land (P \lor Q)) \rightarrow Q$ a tautology?
- **2.** Is there any proposition imply on a tautology and why the contradiction imply on any proposition?
- **3.** How many different strings of length 'n' can be formed from the English alphabets?
- 4. Find the recurrence relation whose solution is $S(K) = 5.2^k$
- In a Boolean algebra prove that
 (a^b) = a v b
- **6.** Draw the complete graph K_5 .
- 7. What is the Travelling Salesmen Problem?

Subject Name: Discrete Structures Max. Marks: 50

- **8.** Prove that every subgroup of an abelian group is normal.
- **9.** "if G is a finite group and H is a subgroup of G, then the order of H divides the order of G" what is the above statement meant?

10.
$$(x_1 \wedge \overline{x_2}) \vee (x_1 \wedge x_2) \vee (\overline{x_1} \wedge x_2)$$
.

What is the Boolean expression in the notation of above logic design?

PART – B 10 * 3 = 30 Mark (Each answer- Word limit- 250 words)

11. Use indirect method of proof to prove that $(\forall x) (P(x) V Q(x)) \rightarrow (\forall x) P(x) V (\sim x) Q(x)$.

12. Prove that

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + --- + \frac{1}{\sqrt{n}} > \sqrt{n}$$
 for $n \ge 2$ using

principle of mathematical induction.

- 13. Find the solution to the recurrence relation $a_n=6a_{n-1}-11a_{n-2}+6a_{n-3}$ with the initial condition $a_0=2$, $a_1=5$ and $a_2=15$.
- **14.** Draw the expression tree and then write out the preorder traversal of the tree

(a).
$$x *x - 4 y * z$$

(b).
$$((s x + q) x + r) x + p$$

$$(c)$$
. $xy+xz$

(d).
$$t(h+r)$$